Karen Jin \& Anton Dubrau
Technische Universität Berlin
MBA Sustainable Mobility Management

Introduction

Rail Systems (light rail \& heavy rail) can provide

- A large transport capacity in a small of space
- With a good overall environmental footprint

A major concern is the cost of the infrastructure, they are often not economically viable.

BEMU - A Motivating Example

Consider the electrification of railways around the fictitious city of "Alt Waldberg", to illustrate common infrastructural, technological,
economical \& environmental trade-offs:

- Electrified main-line runs through city
- Non-electrified lines cover the region
- Those lines have little service (1 per hour)
- The shared city section has a lot of service

Possible Options for Alt Waldberg

	OPTION 1: ELECTRIFICATION	OPTION 2: DIESEL-ONLY TRAINS	OPTION 3: EMU \& DMU TRAINS, WITH TRANSFER	OPTION 4: DUAL-MODE TRAINS	OPTION 5: BATTERY TRAIN, CHARGE AT NIGHT	OPTION 6: BEMU TRAIN, CHARGE VIA WIRE
\qquad Powered by wire \qquad Powered by diesel-. Powered by battery						
Noise and emission	++	- - (emissions/noise even under wire)	- (emissions and noise in diesel sections)	- (emissions and noise in diesel sections)	++	++
Infrastructure co	very high	low	low	low	Iow	low
Vehicle cost	low	low (4.5M€)	low-medium	high	very high	medium-high (6-7M€)
Operating cost	low	high	high for diesel sections	high	low-medium	low
Issues	-infrastructure = \$\$\$ -poor cost-benefit -issue: stacked freight	-diesels may be disallowed, e.g. city-tunnel -non-standardized fleet	-transfers are very unattractive -non-standardized fleet	-trains are complex, expensive \& heavy -non-standardized fleet	-big batteries are expensive \& heavy -increases infra cost	-few examples in operation

"Bombardier Primove" on Talent 3

BOMBARDIER TALENT 3

3rd gen. of the "Talent" regional train platform

- Maximum speeds: $160-200 \mathrm{~km} / \mathrm{h}$
- Length: 3-12 cars per train

"PRIMOVE SYSTEM" ON TALENT 3

"Primove" is Bombardier's vehicle battery system

- 4 Primove units on roof, $7.5 \mathrm{t}, 300 \mathrm{kWh}$ total - 440 kWh possible with additional units
- Range: 40 km , but up to 100 km is possible

THE BEMU VERSION

The BEMU version of the Talent 3 is one possible configuration of the platform

- It grew from research funded by BMVI
- uses the "Bombardier Primove System",

THE PILOT PROJECT

BMVI Research is built around a pilot project:

- It requires 40 km of range
- Up to $160 \mathrm{~km} / \mathrm{h}$ under wire, $120 \mathrm{~km} / \mathrm{h}$ on battery
- DoD is 40% with 50% Catenary-free operation

BEMU shows possibility reducing cost for overhead infrastructure. But What if We Remove the Rails?

ART - Autonomous-rail Rapid Transit

ART is a rail-less system for public transport that follows markings on the road by scanning them, developed by CRCC (China Railway Construction Corporation Ltd).

SPECIFICATIONS	
Dimensions (m)	$\leftrightarrow 2.65 ~ \downarrow 3.431 .6$
Energy per km	$4 \mathrm{kWh} / \mathrm{km}$
Battery	
Capacity	170 kWh (Li-Titanate Bat.)
Charging Method	Pantograph 30 s for $3-5 \mathrm{~km}$ 10 mins for 25 km
Max. Speed	Up to 70km/hour
Life Cycle	25 years
Turning Radius	15 m minimum
Incline	Up to 13%

BENEFITS

- Low emission, construction and maintenance cost
- Short construction time
- Flexible operations in changing traffic conditions

LIMITATIONS

- Cost concerns: road/rail CAPEX vs OPEX; lifetime of buses vs trams
How smart is it? Test drive was still manually driven.
Sharing Lanes: Should trams run on dedicated lanes?

CONCLUSION

New technology can reduce infrastructure costs and may make trains more viable:

1) BEMUs like the Bombardier Talent 3 allow extending electrified rail systems into non-electrified territory - the technology is realistic, but the impact may not be very large
2) ART promises tram systems without overhead lines and without rails - the potential impact is high, but there's uncertainty whether the system can live up to its promises
