E-mobility of 2 and 3 wheelers: Copenhagen, Paris & Delhi

Forschungscampus * **Lab A** Reality

Agrawal, Amit; Czeh, Alexander; Singh Chouhan, Mahendra

Conference | 12 April 2018

Introduction Systems Approach

How do 2/3 E-Mobility deployments compare across cities in developed and emerging markets?

- What are the lessons learned for each city?

- How can we scale such project globally?

Developed **Emerging** Markets Markets

Paris Pop: 2.26 mil 21,498 people/sq km

Electric 2/3

Wheelers

Delhi Pop: 20 mil 11,297 people/sq km

Bycyklen Pedelec Sharing System

Velib Pedelec Sharing System

Private Taxi E-Rickshaw System

Scale, Economics & Regulation				
	Copenhagen	Paris	Delhi	
Number of e- vehicles / Stations	1860 / 105	5460 / 1229	100.000 / free floating	
Usage	~ 1 mil rents in 2016	~ 20 mil rents in 2017	500 mil rents in 2017	
Passengers/users per day per vehicle	1.4	10-15	18	
Vehicle capital cost (Euro)	~2,300	~2800	~1000-1500	
Price per km or per hour per passenger (E)	4	1	0.20	
Hourly price over hourly GDP per capita	17 %	6 %	25 %	
Regulation / licensing	License until 2021 by City administration	city government awarded the concession	Mildly regulated from 2014 - low compliances	

	Copenhagen	Paris	Delhi	
Road space consumption (w.r.t. car)	9 %	9%	80 %	
Transport capacity - people	1	1	4-5	
Transport capacity - goods - Kg	15	15	25	
Integration with public transport	Free Transport & Travel planner App	no	Serves as feeder for metro (S-bahn)	
Electric Motor type - in Watts	250	250	650-1400 DC	
Battery type	37V 10 Ah Li-ON	36V 8.8 Ah Li-ON	12V 100Ah VRLA	
Range km	25	50	90-100	
Speed boost (km/hr)	+22	+25	25	
Vehicle weight kg	30	25	300	
F-Mobility System				

Capacities & Technology

Lessons Learned per E-Mobility System

Price

Copenhagen

- ➤ Promote the low costs in comparison to MIT
- Integration in PT
- ➤Integration in PT supports Bike &

The article of IEEE Spectrum, 2017 By Lucas

https://spectrum.ieee.org/cars-that-think/transportation/alternative-transportation/danish-

electric-bikesharing-dodges-failure

2. Visit Copenhagen, 2017

- User-friendliness
- ➤Integration of smartphones required rather than usage of an integrated tablet
- Subsidies
- ➤ Subsidies can only be justified by reduction of MIT –accompanying research about effects on MIT required
- Network Density
- ➤ Network density needs to be higher to increase rentals

Copenhagen

Pop: 0.71 mil

7,508 people/sq km

Network Density

- ➤ Critical mass of stations and pedelecs enables high adoption
- Integration into Urban Identity
- ➤ Design elements and visibility on streets makes Velib part of daily
- Smartphone integration
- ➤ Users can charge their smart devices on the move

- Safety & Security
- ➤ Safety accessories (Helmet, knee pad...) required
- User-friendliness
- **➤**Descriptive subscription scheme required

- Bottom up innovation
- ➤ Grass-root innovation can solve large scale problems
- ➤ Low policy interference
- Job creation
- ➤ New technologies can lead to increase in employment and social empowerment

- ➤ Lack of institutional mechanisms for training can compromise safety
- ➤ E.g. education instead of penalties
- Infrastructure development
- ➤ New means of transport require supporting infrastructure (like lanes, parking spots) otherwise they may lead to chaos

Best Practices for Global Scalability & Discussion

- High population density and low private vehicle ownership support adoption.
- Electric mobility is viable and scalable for both high and low per capita income economies, if adapted to local conditions.
- Infrastructure development and integration of the system in city scape promotes acceptance and usage.
- Such systems can be implemented with a sustainable business model through corporations or individual entrepreneurs.

References

https://www.visitcopenhagen.com/copenhagen/ bycyklen-gdk495345 3. Bycycklen.dk, 2018 https://bycyklen.dk/en/the-bycykel/ 4. Website of Velib

https://www.velib2018.com/ Velib Wikipedia Case Study by 'C40 Cities'

http://www.c40.org/case_studies/velib-%E2%80%93-a-new-paris-love-affair Article in tripsavvy 'Complete Guide to Velib' Bike Rentals in Paris' by Courtney Traub https://www.tripsavvy.com/velib-bike-rentals-in-paris-1618445

Electric rickshaw, Wikipedia The article of The Indian Express 'E-rickshaws versus Auto-rickshaws' http://indianexpress.com/article/cities/delhi/erickshaws-vs-auto-rickshaws/

Deepanjan Majumdar, Tushar Jash, Merits and Challenges of E-Rickshaw as An Alternative form of Public Road Transport System: A Case Study in the State of West Bengal in India 11. The article of Business Standard 'Easy economics: Guess how much an e-rickshaw driver in delhi earns daily'

TU Campus EUREF Student Poster

