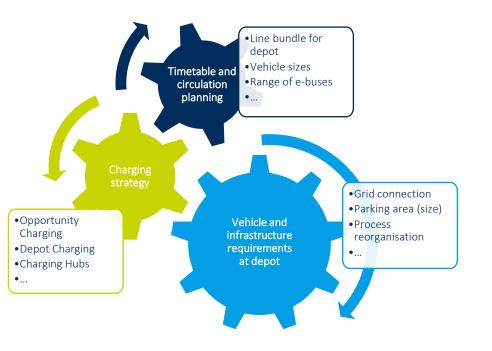


FROM PLANNING TO OPERATION OF ELECTRIC BUS DEPOTS INTEGRATED IT SYSTEMS FOR DEPOT AND CHARGING MANAGEMENT

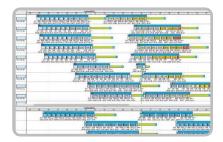
DR.-ING. ENRICO LAUTH

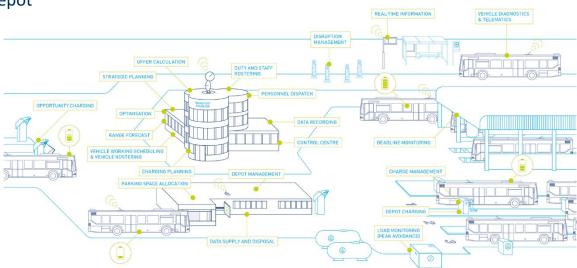


M2G-ITS Lab Workshop 2024, Kyoto 7th May 2024

PLANNING OF DEPOTS FOR ELECTRIC BUSES

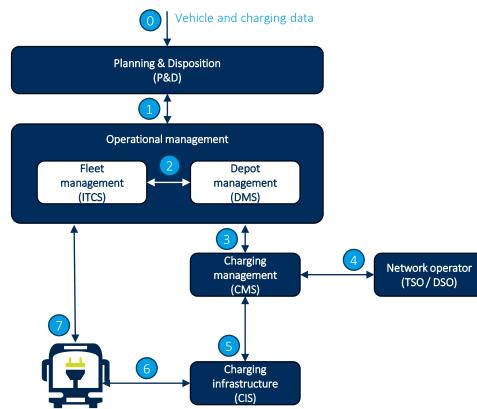
- "Everything is connected to Everything"
 (German quote, Alexander von Humboldt)
- Aim is an overall concept optimised in terms of costs and operation
- Difference between new depot (green field) and conversion of existing depot
- Simulation environments are necessary for larger projects (e.g. eFLIPS)


NEED TO USE IT SYSTEMS



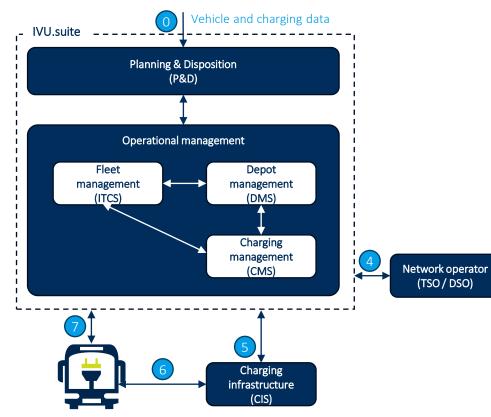
Challenges

- Requirements are increasing significantly due to digitalization, automation and electrification
- Technical requirements are becoming more complex, just like IT systems
- The complexity is concentrated at the depot
- Secondary goals
 - Increase efficiency
 - Increase operational safety and quality
 - Keeping costs under control
 - Compensating for staff shortages and a lack of qualifications



INTERFACES

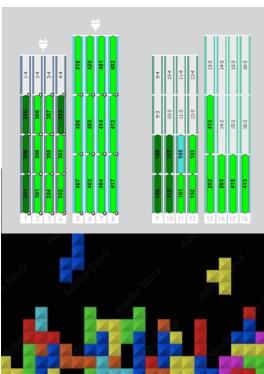
COMPLEXITY REDUCTION THROUGH STANDARD INTERFACES


#	Systems		Standard
0		P&D	
1	P&D	ITCS, DMS	VDV452, VDV455
2	ITCS	DMS	VDV461
3	ITCS, DMS	LMS	VDV463
4	LMS	TSO/DSO	IEC-60870-5-104
5	LMS	LIS	OCPP, VDV261
6	LIS	BUS	ISO15118, VDV261
7	BUS	ITCS	VDV238, VDV435

- Many systems and components increase complexity
- Standardised interfaces help to link and control systems

INTERFACES

REDUCING COMPLEXITY THROUGH INTEGRATION


#	Systems		Standard
0		P&D	
1	P&D	ITCS, DMS	VDV452, VDV455
2	HTCS	DMS	VDV461
3	ITCS, DMS	LMS	VDV463
4	LMS	TSO/DSO	IEC-60870-5-104
5	LMS	LIS	OCPP, VDV261
6	LIS	BUS	ISO15118, VDV261
7	BUS	ITCS	VDV238, VDV435

- Interfaces increase complexity, cost project time and (ongoing) money
- Integration eliminates this risk
- Furthermore, algorithms and data in all subsystems match in the integrated system

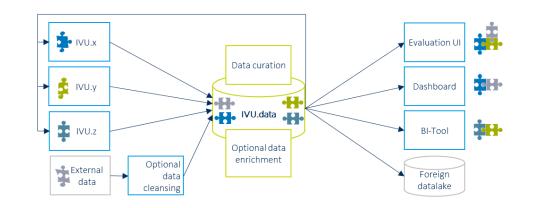
OPERATION

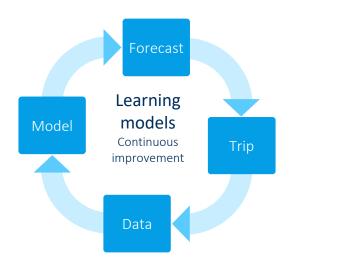
INTEGRATED DEPOT OPTIMISATION FOR OPERATIONAL STABILITY

- Practical experience: Manual assignments are only manageable to a certain amount due to their complexity
 - Park vehicles in suitable parking spaces
 - Allocate rotations to suitable vehicles
 - Charge and prepare vehicles in the best possible way
 - Consider additional criteria: Vehicle type, topology, ...
- Electromobility increases the requirements
 - Compliance with the target SoC
 - Plan for preconditioning
- Integrated depot optimisation solves these challenges
 - Algorithmic solution finding in form of multi-criteria optimization
 - Automatically adjusts vehicle circulation allocations on an ongoing basis
 - Conflicts are eliminated or their effects minimised

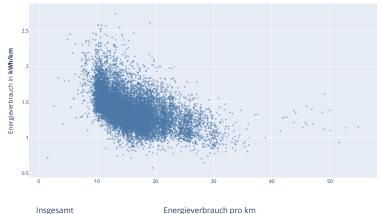
OPERATION

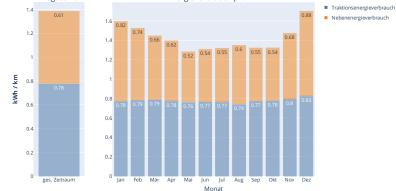
SMART CHARGING FOR ROBUST OPERATION AND COST OPTIMISATION


- Practical experience: Smart charging requirements cannot be handled manually
 - Prioritisation of charging power and load distribution
 - Grid connection of depot
 - Better distribution of power consumption to reduce grid charges (peak shaving, atypical load)
 - Utilisation of time-variable electricity tariffs
 - Preconditioning
 - Minimisation of battery ageing
 - Opportunity charging en route
 - Self-generated electricity e.g. PV
- Close interaction between depot and charging management is essential
- Enables intelligent allocation of rotations, vehicles and charging infrastructure

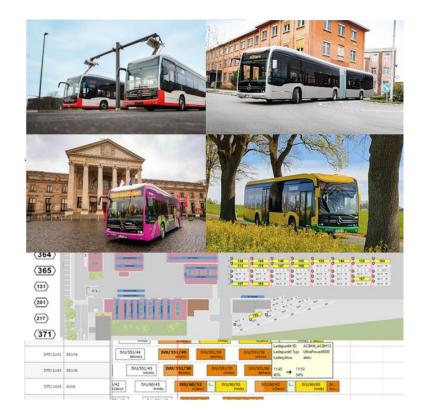

DATA DATA DATA DATA ACQUISITION AND ANALYSIS OPTIMISE PROCESSES

- Analysing vehicle and charging data in conjunction with operating data
- Aggregation of information in a central data pool
- Context-related evaluation
- Data analysis requires professional and technical expertise
- Based on this, optimisation of operation (of electric buses)




DATA DATA DATA CONTINUOUS IMPROVEMENT THROUGH SELF-LEARNING MODELS

- Conservative forecasts with large safety buffers
- Forecasts based on data and algorithms are much more accurate
- Self-learning models continue to do this


Energieverbrauch nach Durchschnittsgeschwindigkeit je Umlauf

THANK YOU VERY MUCH FOR YOUR ATTENTION

Dr.-Ing. Enrico Lauth
 Project Manager Public Transport

enrico.lauth@ivu.de

 IVU Traffic Technologies AG Bundesallee 88 12161 Berlin Deutschland

www.ivu.de