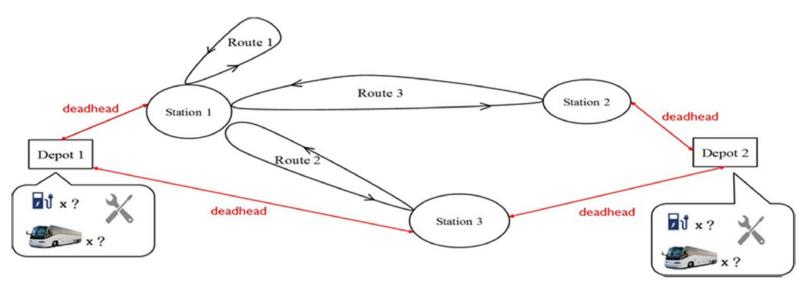
Mobility2Grid Workshop @ Kyoto, May 8th 2024

The depot and charging facility location problem for electrifying urban bus services

Yu-Ting Hsu / National Taiwan University Shangyao Yan, Powei Huang / National Central University

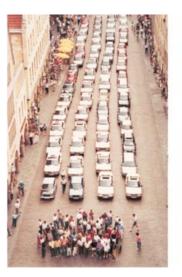
Background

To transition from diesel-consuming buses to electric ones


- Fostering sustainable development with environmentfriendlier public transport
- Targeting zero emissions
- Containing air pollutants (particularly PM 2.5)
- Advances in electricity storage and battery technologies

Location problem of deploying diesel-consuming bus services

Basic concerns in practice

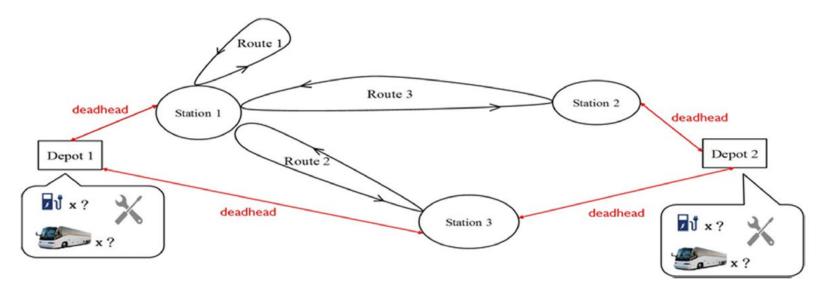

- Perspective of bus operators: operating cost and efficiency
 - Bus operation (fleet size, route assignment, deadhead mileage...)
 - Infrastructure construction and maintenance (depot capacity and land acquisition...)

Location problem of deploying diesel-consuming bus services

Basic concerns in practice

- Perspective of social welfare
 - Service level
 - Alleviating traffic congestion
 - Environmental impact
 - Accessibility and equity

Transition to electric bus services


Additional issues

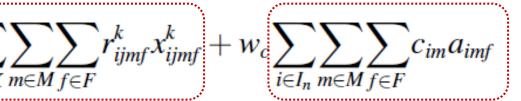
- Fleet size and mixture of diesel-consuming and electric buses
- Deployment of charging stations
 - slow-recharging, fast-recharging, and battery exchange stations
 - power tracks
- Single charge range / range anxiety

Fundamental considerations: cost-benefit analysis over the life cycle

Strategic planning

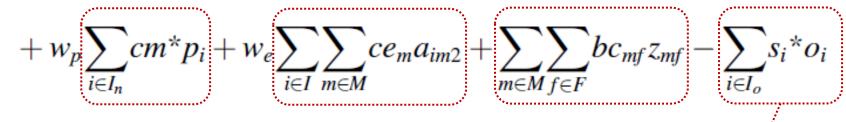
Considering both planning and operational perspectives (where system deployment cost over the planning horizon is converted into net present value)

To determine deployment strategies that minimize lifecycle operating cost


Formulation

Objective function:

Deadhead mileage


 $k \in K m \in M f \in H$

Establishing and operating depots

Renting

external buses

Establishing

chargers

Establishing maintenance stations

Decision variables:

 $MinZ = w_d$

- Whether to establish depots, maintenance stations, chargers, and the associated capacities
- Route assignments (over multi-size and multiple fuel types)
- Whether to rent external buses
- Whether to close and sell off the land of existing depots

Selling off existing depots

Formulation

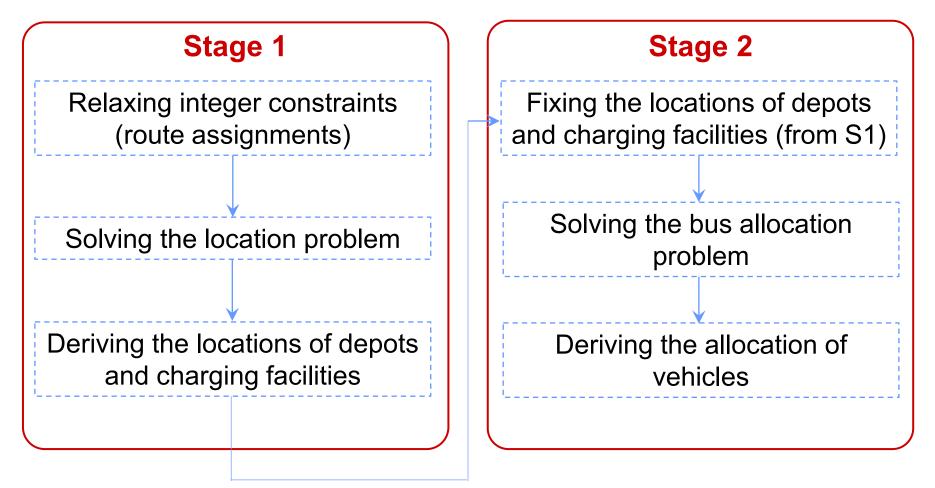
Constraints: Required number of buses for route assignments •

$$\begin{split} \sum_{i \in I} \sum_{f \in F} \sum_{k \in K} x_{ijmf}^{k} \ge d_{jm} \forall j \in J, m \in M \\ a_{imf} - 1 \le (1 + \alpha) \sum_{j \in J} \sum_{k \in K} x_{ijmf}^{k} \le a_{imf} \forall i \in I, m \in M, f \in F \\ \end{split}$$

$$\begin{aligned} \text{Capacities of depots, maintenance stations, and chargers} \\ \sum_{m \in M f \in F} r_{m} a_{imf} \le m_{i}(1 - o_{i}) \forall i \in I_{o} \\ \sum_{m \in M} r_{m} a_{imf} \ge n_{i}(1 - o_{i}) \forall i \in I_{o} \\ \sum_{j \in J} \sum_{k \in K} \sum_{m \in M} \sum_{j \in F} x_{ijmf}^{k} \le m_{i}p_{i} \forall i \in I_{n} \\ \sum_{m \in M f \in F} r_{m} a_{imf} \ge n_{i}(1 - o_{i}) \forall i \in I_{o} \\ \sum_{j \in J} \sum_{k \in K} \sum_{m \in M} x_{ijmf}^{k} \le m_{i}p_{i} \forall i \in I_{n} \\ \sum_{m \in M f \in F} r_{m} a_{imf} \le m_{i}y_{i} \forall i \in I_{n} \\ \sum_{j \in J} \sum_{k \in K} \sum_{m \in M} x_{ijm2}^{k} \le m_{i}q_{i} \forall i \in I \\ \sum_{m \in M f \in F} r_{m} a_{imf} \ge n_{i}y_{i} \forall i \in I_{n} \\ \sum_{j \in J} \sum_{k \in K} \sum_{m \in M} x_{ijm2}^{k} \ge q_{i} \forall i \in I \\ \sum_{m \in M f \in F} r_{m} a_{imf} \ge n_{i}y_{i} \forall i \in I_{n} \\ \sum_{j \in J} \sum_{k \in K} \sum_{m \in M} x_{ijm2}^{k} \ge q_{i} \forall i \in I \\ \sum_{m \in M} x_{ijm2}^{k} \ge n_{i}y_{i} \forall i \in I_{n} \\ \sum_{j \in J} \sum_{k \in K} x_{m \in M} x_{ijm2}^{k} \ge q_{i} \forall i \in I \\ x_{ijm2}^{k} \ge q_{ijm2}^{k} \ge q_{ijm2}^{k} \ge q_{ijm2}^{k}$$

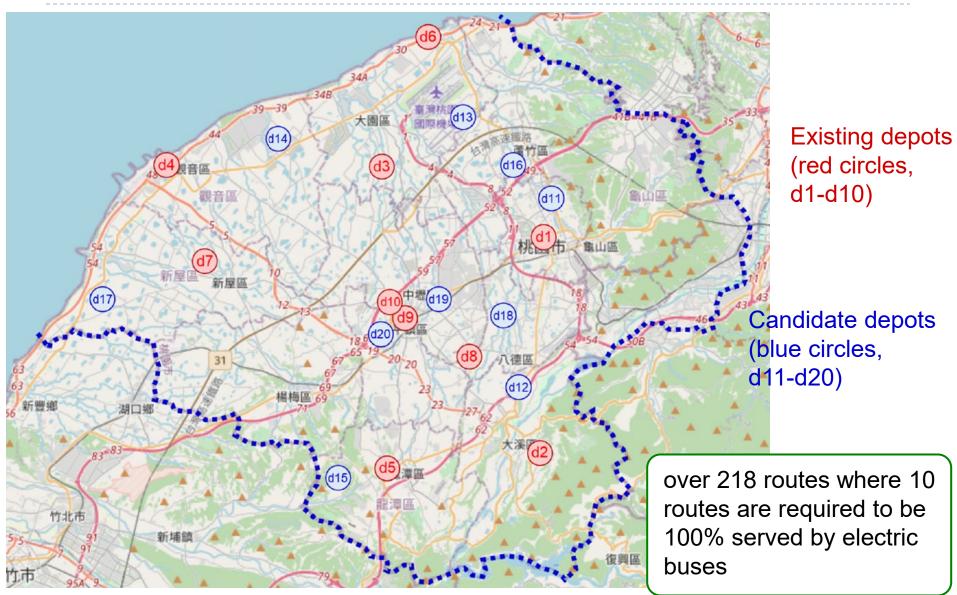
Formulation

Constraints:

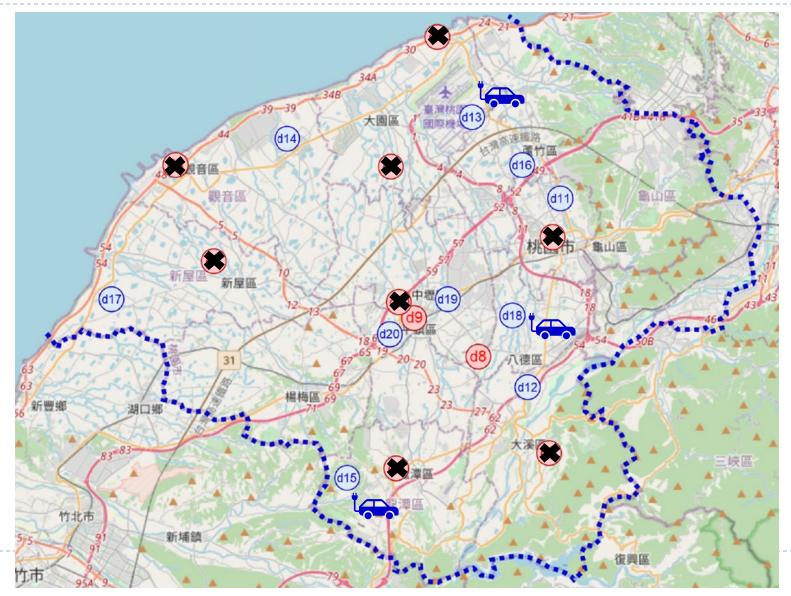

Requirement on the number of electric buses and associated route assignments

$$b_{km} - 1 \leq \sum_{i \in I} \sum_{j \in J} \sum_{f \in F} x_{ijmf}^k \leq b_{km} \forall k \in \mathbf{K}, m \in \mathbf{M}$$
$$\sum_{i \in I} \sum_{j \in J} \sum_{m \in M} x_{ijm2}^k \geq u_k (\sum_{i \in I} \sum_{j \in J} \sum_{m \in M} \sum_{f \in F} x_{ijmf}^k) \forall k \in \mathbf{K}$$
$$\sum_{i \in I} \sum_{j \in J} \sum_{k \in K} x_{ijmf}^k \leq f_{mf} + z_{mf} \forall m \in \mathbf{M}, f \in \mathbf{F}$$

Binary and non-negative integer values of decision variables

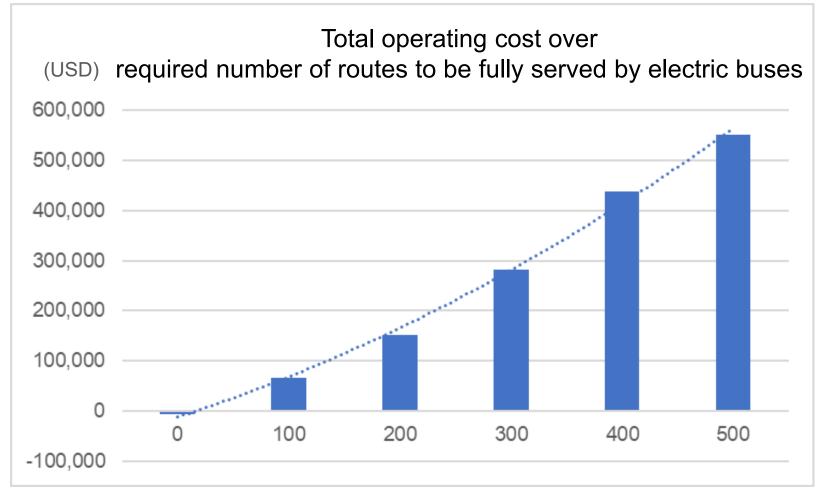

Solution algorithm (for the NP-hard problem)

Two-stage heuristic

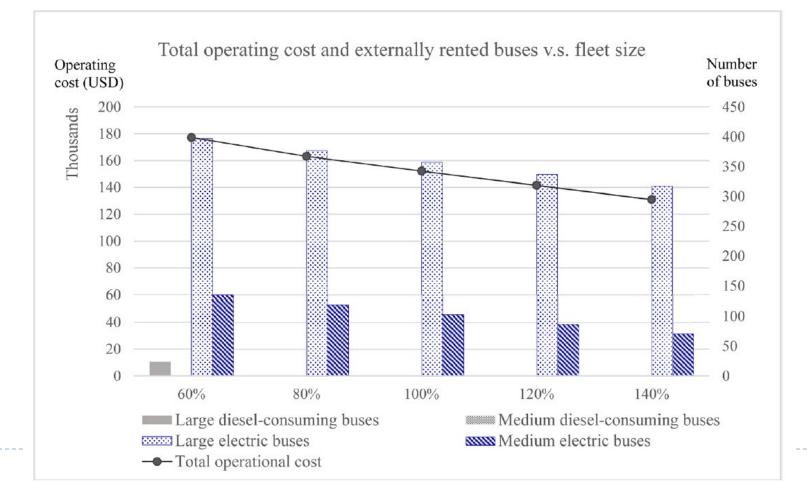


Hsu, Y. T., Yan, S., & Huang, P. (2021). The depot and charging facility location problem for electrifying urban bus services. *Transportation Research Part D: Transport and Environment*, *100*, 103053.

Case study in Taoyuan, Taiwan



Case study in Taoyuan, Taiwan


	Operating cost (USD/km)	Large-sized	Medium-sized	
Findings	Diesel-consuming buses	0.756	0.529	
	Electric buses	1.404	0.907	

Approximate linear increase in total operating cost with the required level of electrification

Findings

A larger fleet size enables more robust and flexible operation (and lower needs for external buses)

14

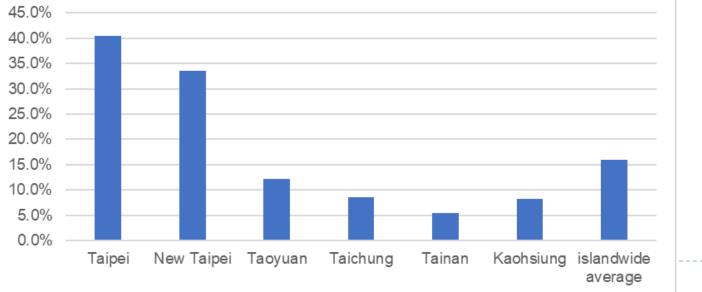
Findings

- Sensitivity analysis on VMT cost
 - Decreasing VMT cost

Ionger deadhead mileage (deploying depots in suburban areas)

- Sensitivity analysis on capacities of new depots
 - Improved operational efficiency by replacing largersized depots with smaller ones
- Sensitivity analysis on costs of establishing and operating new depots
 - Moving depots from downtowns to suburban areas to attain better urban development

Issues to be further explored


- Demand and land-use pattern modeling
- Subsidy and financial analysis
- Mixed fleet with hybrid vehicles
- Scheduling of bus operation and charging
- Integrated model of electric bus system deployment and power grid design
- Comprehensive analysis of economic benefits

Into the real world: some facts about Taiwan

- Population: 23.4 million
- No. passenger cars: 8.6 million
- No. motorcycles: 14.5 million

Shares of public transport usage (in terms of the number of trips)

Into the real world

Progress in Taipei: 2018 ⇒ 2023 (650 electric buses, 19%) ⇒ 2030 (100% electric buses)

🙂 即時 要聞 妙	吳樂 運動	全球	社會	地方	產經	股市	房市	生活	寵物	健康	橘世代	文教	評論	兩岸
udn / 地方 / 大台北									重志	新聞 ▶	·		0:00 /	0:00

充電瓶頸 恐卡推電動公車速度

2024-01-22 00:20 聯合報/ 記者林麗玉/台北報導

 \square

2050淨零碳排、2030<u>公車</u>全電動化。2 使用執照,但盲點是<u>台電</u>仍「不敢保證 史以來最嚴重的癱瘓時期。首都集團總 上路,但2030年所有4千輛要全電動恐 減緩推電動公車速度」。交通局表示,

因應東區用電需求,<u>北市</u>松湖臨時變電 質疑,儘管松湖將取得使照,但現況台 能供電無虞,北市既有公車調度站,就

要電動公車跑又不給電,北市近 50 輛電動公車閒置無法充電

Into the real world

Electric bus: 11 million TWD (~370 thousand USD) Diesel-consuming bus: 4.5 million TWD (~150 thousand USD)

Into the real world

见 即時 要聞 娛樂 運動 全球 社會 地方 產經 股市 房市 生活 寵物 健康 橘世代 文教 評論 兩岸

TPASS基北北桃1200元月票1日正式上路,許多民眾改搭大眾交通工具,桃園市公車卻仍持續脫班,蘆竹、八德通勤族反映「公車更難搭了」。市府交通局坦言,主因還是駕 駛人力不足,導致公車班次不穩定,將持續推動客運駕駛徵才和留才方案,緊盯業者改

宜蘭縣搭學生公車注意!國光客運減班「這些路線」啟動代駛

🖤 Share

分享 24

「要到台北上王 車,未料排隊/ 乘國光客運184 時能解」。

議員張桂綿表示,疫後 找替代方案,同樣往返 數十公尺;市府提供從 畫從南崁到機捷A10站

善脫班。

Ø

LINE

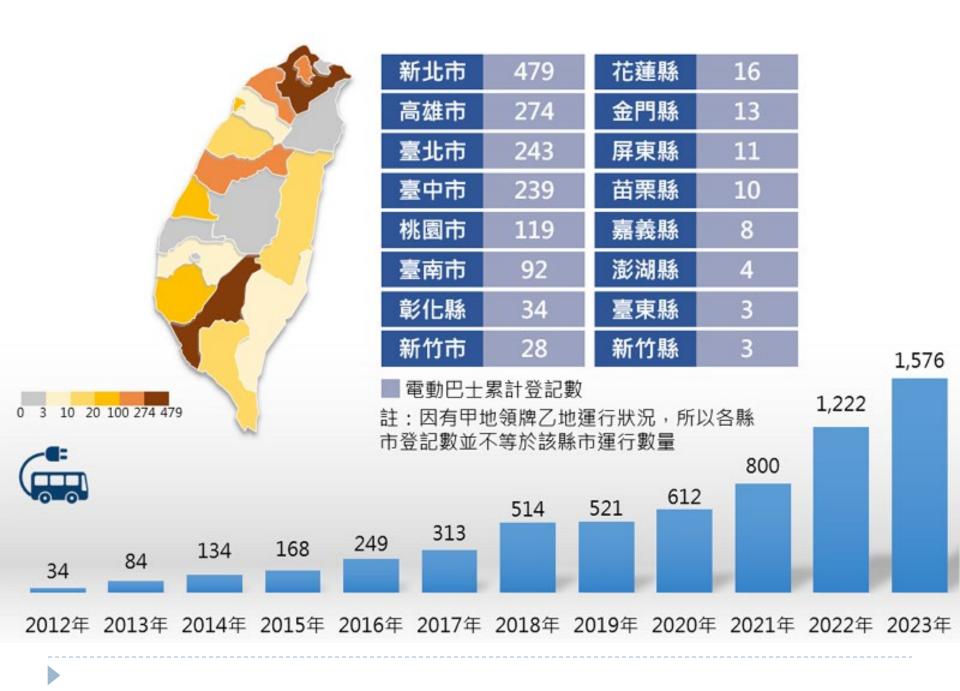
 \square

 \square

AΑ

Some concluding remarks

- Motivation for bus operators to join electrification: subsidy and financial planning based on transparent cost structure
- Sophisticated problem contexts depending on transit and energy markets: needing to be supported by reliable ridership and electricity supply
- Holistic and robust policy-making that coordinates perspectives of different stakeholders and against development variability
- Monitoring and data management platform to better understand the market and operational characteristics of electric bus systems



Mobility2Grid Workshop @ Kyoto, May 8th 2024

Thanks for listening & Questions are welcome!

Yu-Ting Hsu / National Taiwan University <u>yutinghsu@ntu.edu.tw</u> Shangyao Yan, Powei Huang / National Central University

